The first 5000 decimals of the π

The value of π


3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989380952572010654858632788659361533818279682303019520353018529689957736225994138912497217752834791315155748572424541506959508295331168617278558890750983817546374649393192550604009277016711390098488240128583616035637076601047101819429555961989467678374494482553797747268471040475346462080466842590694912933136770289891521047521620569660240580381501935112533824300355876402474964732639141992726042699227967823547816360093417216412199245863150302861829745557067498385054945885869269956909272107975093029553211653449872027559602364806654991198818347977535663698074265425278625518184175746728909777727938000816470600161452491921732172147723501414419735685481613611573525521334757418494684385233239073941433345477624168625189835694855620992192221842725502542568876717904946016534668049886272327917860857843838279679766814541009538837863609506800642251252051173929848960841284886269456042419652850222106611863067442786220391949450471237137869609563643719172874677646575739624138908658326459958133904780275900994657640789512694683983525957098258226205224894077267194782684826014769909026401363944374553050682034962524517493996514314298091906592509372216964615157098583874105978859597729754989301617539284681382686838689427741559918559252459539594310499725246808459872736446958486538367362226260991246080512438843904512441365497627807977156914359977001296160894416948685558484063534220722258284886481584560285060168427394522674676788952521385225499546667278239864565961163548862305774564980355936345681743241125150760694794510965960940252288797108931456691368672287489405601015033086179286809208747609178249385890097149096759852613655497818931297848216829989487226588048575640142704775551323796414515237462343645428584447952658678210511413547357395231134271661021359695362314429524849371871101457654035902799344037420073105785390621983874478084784896833214457138687519435064302184531910484810053706146806749192781911979399520614196634287544406437451237181921799983910159195618146751426912397489409071864942319615679452080951465502252316038819301420937621378559566389377870830390697920773467221825625996615014215030680384477345492026054146659252014974428507325186660021324340881907104863317346496514539057962685610055081066587969981635747363840525714591028970641401109712062804390397595156771577004203378699360072305587631763594218731251471205329281918261861258673215791984148488291644706095752706957220917567116722910981690915280173506712748583222871835209353965725121083579151369882091444210067510334671103141267111369908658516398315019701651511685171437657618351556508849099898599823873455283316355076479185358932261854896321329330898570642046752590709154814165498594616371802709819943099244889575712828905923233260972997120844335732654893823911932597463667305836041428138830320382490375898524374417029132765618093773444030707469211201913020330380197621101100449293215160842444859637669838952286847831235526582131449576857262433441893039686426243410773226978028073189154411010446823252716201052652272111660396665573092547110557853763466820653109896526918620564769312570586356620185581007293606598764861179104533488503461136576867532494416680396265797877185560845529654126654085306143444318586769751456614068007002378776591344017127494704205622305389945613140711270004078547332699390814546646458807972708266830634328587856983052358089330657574067954571637752542021149557615814002501262285941302164715509792592309907965473761255176567513575178296664547791745011299614890304639947132962107340437518957359614589019389713111790429782856475032031986915140287080859904801094121472213179476477726224142548545403321571853061422881375850430633217518297986622371721591607716692547487389866549494501146540628433663937900397692656721463853067360965712091807638327166416274888800786925602902284721040317211860820419000422966171196377921337575114959501566049631862947265473642523081770367515906735023507283540567040386743513622224771589150495309844489333096340878076932599397805419341447377441842631298608099888687413260472

The Ratio method


A simple method based on the experience. The ratio of a circle's attributes is nearly constant.

Steps to calculate:

You will need: something in a circle shape, ruler, string

  1. Measure the circumference of the circle.
  2. Measure the diameter of the circle.
  3. Divide the circumference with the diameter.
  4. Repeat the process on diferent size of circles.
Examples
  • IKEA glass: 28.3cm / 9cm = 3.1444
  • Glass at ESS: 28.8cm / 9.5cm = 3.0315
  • Bycicle wheel: 223cm / 69.8cm = 3.1948

The Gregory-Leibniz Series


The derivation begins with the formula for the geometric series, which is as follows: $$ \frac{1}{1 - x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n \quad \text{where } |x| < 1 $$

Substitute the \(-x^2\) value for the \(x\) value in the formula:

$$ \frac{1}{1 - (-x^2)} = 1 + (-x^2) + (-x^2)^2 + (-x^2)^3 + \dots $$ $$ \frac{1}{1 + x^2} = 1 - x^2 + x^4 - x^6 + \dots = \sum_{n=0}^{\infty} (-1)^n x^{2n} $$

Now we integrate both sides of the equation by \(dx\):

$$ \int \frac{1}{1 + x^2} \,dx = \int (1 - x^2 + x^4 - x^6 + \dots) \,dx $$

On the left, \(\frac{1}{1 + x^2}\) is integrated by the \(\arctan(x)\) (arctangent) function:

$$ \int \frac{1}{1 + x^2} \,dx = \arctan(x) + C $$

On the right-hand side, we integrate the series term by term:

$$ \int (1 - x^2 + x^4 - x^6 + \dots) \,dx = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + C $$

Combining the two sides, we get the power series of the arctangent:

$$ \arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots $$

Finally, we use the mathematical fact that \(\arctan(1) = \frac{\pi}{4}\). Substitute \(x=1\) into the power series:

$$ \arctan(1) = 1 - \frac{1^3}{3} + \frac{1^5}{5} - \frac{1^7}{7} + \dots $$ $$ \frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots $$

This has led to the Gregory-Leibniz formula, which gives the value of Pi.

\[ \frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} \]

Let's give it a try:

The value of the PI:

The Ramanujan-formula


\[ \frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k)! \cdot (1103 + 26390k)} {(k!)^4 \cdot 396^{4k}}\]

The Monte Carlo Method